Teaching
Courses
Number | Sem. Hours | Type | Name | Lecturer |
---|
Future lectures/courses (tentative list)
Semester | topic |
WS 2024/25 |
|
SS 2025 |
|
WS 2025/26 |
|
SS 2026 |
|
WS 2026/27 |
|
SS 2027 |
|
WS 2027/28 |
|
Bachelor/Master Theses
I am offering Bachelor and Master theses from the area of applied and numerical analysis. Currently, they are mainly concerned with one of the following topics:
- Multivariate and high-dimensional approximation theory; particularly kernel-based methods and neural networks.
- Meshfree methods for the solution of partial differential equations; particularly radial basis functions and particle methods.
- Application of the methods mentioned above to problems from uncertainty quantification.
Some of the topics mentioned above are described in more detail on our research web page. In general, I am also open for own suggestions, as long as they are interesting and thematically not too far away from my own the research interests.
Required or suggested courses for a Bachelor thesis:
- Einführung in die numerische Mathematik
- Einführung in die höhere Analysis
- Einführung in die iterativen Verfahren
- Constructive approximation methods
- Applied functional analysis
Required or suggested courses for a Master thesis:
- Constructive approximation theory
- Applied functional analysis
- Numerics of partial differential equations
- Meshfree methods
- High-dimensional approximation
- Uncertainty quantification
Examples of previous theses:
- Operatortheortische Untersuchung kernbasierter Approximationsräume (Master)
- Fehlerabschätzungen für regelarisierte, kernbasierte Approximationsverfahren in höhendimensionalen Räumen (Master)
- Vergleich von Neuronalen Netzen und kernbasierten Verfahren zum Einfärben von Bildern (Bachelor)
- Über kernbasierte Lernverfahren und neuronale Netze (Bachelor)
- Ein gitterfreies Verfahren zur numerischen Lösung von Problemen der optimalen Steuerung partieller Differentialgleichungen (Master)
- Kernel-based reconstruction for parametric partial differential equations (Master)
- Approximative Berechnung der Helmholtz-Hodge Zerlegung mittels radialer Basisfunktionen (Bachelor)
- Konvergenz und Stabilität adaptiver Multilevelverfahren (Master)